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Abstract

A ‘gnomomic grid’ on the spherical surface is one whose grid lines are great circles and therefore
centrally project as straight lines in a plane tangent to the sphere. For a cubed-sphere, a
gnomonic grid on each face projects onto the plane tangent to the sphere at the center of the
face to form a net of orthogonal lines on this plane. Each one of the two families of lines
associated with a given face corresponds to the family of planes they belong to that share an
axis of mutual intersection through the center of the sphere. The angular distribution of these
planes at this shared axis can be chosen to define a characteristic type of gnomonic cubed grid.
For the purposes of atmospheric numerical modeling and data assimilation, the most natural
choice is to have the planes defining the grid lines to be equally-spaced in angle (the ‘equiangular’
gnomonic cube grid). With this convenient choice, the problem of interpolating from the grid to
targets located close to a cube-edge is a relatively simple one because the family of lines of which
the edge is a member is smoothly continued in passing from one face to its neighbor. Thus,
extrapolating the grid of one face needed to supply a sufficient margin for subsequent centered-
stencil interpolations to arbitrary target points in that cube’s face involves only one-dimensional
interpolations to generate the extra needed grid points. However, the equiangular gnomonic
grid is not the only one possessing this property. By a minor adjustment to the angular spacing
of the grid lines of each family, it is possible to make all three families of grid lines shared by the
three faces that meet at a cube-corner engage in perfect three-way intersections in the vicinity
of that corner. This is analogous to the construction of a ‘Möbius net’ configuration of lines
in classical projective geometry. When a form of grid has this property one obtains further
simplification of the subsequent interpolations, especially when broad stencils are desired. A
proposed method of constructing such a Möbius-net gnomonic cubed sphere grid is described.

1. Introduction

Since the pioneering work of Sadourny (1972), but especially in the more recent period
corresponding to the emergence of massive paraellization as the dominant computing paradigm
for large scale atmospheric modeling, the importance and convenience of the cubed-sphere
grid architecture for the horizontal numerical framework of global models has been generally
recognized. A central, or ‘gnomonic’, radial projection between a sphere and a concentric cube
provides the simplest class. We shall refer to these generically as the gnomonic types of the
cubed-sphere grids provided the grid lines projected onto the surface of the cubes are straight
and parallel to edges, forming a net of orthogonal lines. This implies that the grid lines on
the sphere are great circles. In Sadourny’s study, the grid was constructed such that the lines
were equidistantly spaced on the surface of the cube, which unfortunately implies a noticeable
excessive crowding of the projected great circle grid lines on the sphere near the cube edges,
which can lead to numerical inefficiency. But a higher implied resolution near edges is not
always entirely a disadvantage given that the numerical truncation errors of finite difference
schemes near edge discontinuities are often greater, other things being equal, and the extra
resolution there tends consequently to compensate.



Another natural choice of gnomonic grid type, strongly advocated by Ronchi et al. (1996),
has the grid lines of each family equally spaced in angle. In this case, which has become
known as the ‘equiangular’ gnomonic grid, as opposed to Sadourny’s original ‘equidistant’ grid,
the resolution on the sphere is much more uniform. Fig. 1 shows both the equidistant and
equiangular grids at very low resolution, where the more uniform resolution of the equiangular
case, panel (b), compared to the equidistant form, panel (a), is evident. However, as already
noted above, and confirmed in the comparative study of Rančić et al. (1996), the equiangular
grid is not necessarily an improvement as judged by how it affects the numerical accuracy of
solutions.

Figure 1. (a) The ‘equidistant’ gnomonic grid, which is very far from being of uniform resolution on the sphere,
and (b) the ‘equiangular’ gnomonic grid, which is relatively more uniform in its resolution on the sphere.

The main practical advantage that Ronchi et al. emphasized is that the equiangular family
of grid lines of one cube face smoothly continue their uniform progression past each cube-edge
(which also belongs to this family) to merge with the family of grid lines of the contiguous face;
this is not true of the equidistant form of the grid as the overlap at a cube-edge illustrated in
Fig. 2a clearly shows. But the equiangular grid, whose corresponding overlap is illustrated in
Fig. 2b, and in Fig. 4 of Ronchi et al. (1996), enjoys a perfect coincidence of these overlapping
grid lines. This means that the reconciliation of the overlapping solutions of a model at each
time step entails only one-dimensional interpolations (in the direction parallel to the shared
grid lines), implying significant gains in computational efficiency as well as a streamlining of
computer code compared to other general composite mesh methods (Starius, 1980; Browning
et al., 1989) and most other gnomonic cubed sphere grids.

There are other types of the gnomonic cubed sphere grids. For example, the FV3 cubed
sphere model, based on the earlier work of Lin and Rood (1997) and Putman and Lin (2007),
which is scheduled for imminent operational use as the next-generation global forecast model at
NCEP, presently uses a grid intermediate between the equidistant and equiangular forms (in a
sense that we make precise in Appendix A), such that the spacing of grid points along the edges
of the cube is uniform. This configuration shares with the equidistant grid the aforementioned
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Figure 2. (a) The equidistant gnomonic grid’s edge overlap, shown in the style of Fig. 4 of Ronchi et al. (1996),
for a pair of contiguous faces, showing that the extended grid’s lines do not coincide with those of the neighboring
face of the cube for this type of gnomonic grid. (b) The equivalent figure for the equiangular gnomonic grid,
showing that the grid lines of the extended grid in the overlap do coincide exactly with the grid lines of the

neighboring face in this case.

disadvantage that the preparation of an extended grid beyond the edges of the cube requires
two-dimensional interpolation.

We should not suppose that the equiangular is the only possible gnomonic grid that bene-
fits from the numerical convenience of having smoothly coinciding families of grid lines when
extended and overlapped beyond the cube edges. Moreover, if one is interested only in fully
unstaggered grids (which is often the case in tasks associated with data assimilation) and if
we then pay attention to the regions in the vicinity of the two cube corners that terminate
the edge where the two overlapping grids are shown, it is strikingly clear in Fig 2b that the
points of the extended portion of each grid in the overlap region are each extremely close to a
corresponding point that belongs to the native grid of this neighboring tile. Therefore, only a
tiny perturbation in the definition of the grid would be needed to make these points coincide
and, if this can be arranged in a smooth and consistent way, all of the problems associated
with interpolation from our cubed-sphere grid become very much simpler (especially when the
overlap regions are relatively wide and the interpolation stencils are relatively broad).

The central projection onto any plane of any gnomonic grid from the sphere must, by
definition, result in a grid composed only of straight lines. But a special case of the problem
of constructing grids of straight lines possessing three-way exact intersections also arises in the
realm of classical projective geometry, particularly in its relation to the representation by a
perspective transformation of a uniform tiling on one plane as it would appear projected by
straight ‘lines of sight’ through ordinary space onto another plane. In this form, the resulting
geometrical construction is known as a ‘Möbius net’. It turns out that the problem we need
to solve is a slightly generalized form of this classical geometrical idea, and we will devote
section 2 to a discussion of the relevant aspects of projective geometry to show exactly how the
construction of the Möbius net can be generalized in the way that satisfies our requirements.
However, in its ideal analytic form, the resulting Möbius net grid is only practical near the
corners of the cube because, as the Möbius net grid lines get closer to the medians of the cube
faces, these grid lines pack progressively closer together and become infinite in number with the
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cube-face median as a limit. In order to formulate a practical grid we must therefore smoothly
graft between the usable Möbius net strips of the grid lines of each family, centered on the
cube edges where they behave well, an alternative distribution of the grid lines starting some
finite distance away from these edges. Polynomial splines provide the obvious and natural way
to ‘fill in’ the grid lines where the Möbius net would be too dense, as we explain in section 3.
In fitting an interpolating spline of this kind, the index of the grid line is proportional to the
polynomial in the angle made by the plane of the grid line with the median plane of the cube
face that the spline largely spans. The polynomial is therefore an odd function of this angle
(by symmetry) and its degree rises by two for every additional degree of continuity attained
at the two ‘joins’ beyond which the Möbius net takes over. It is not obvious that the spline
defined in this fashion should provide a monotonic grid for each degree of continuity and for each
half-width of the Möbius zone; nevertheless, in Appendix B, we prove that this monotonicity
property does indeed hold in the general case. The conclusions are given in Section 4.

2. Projective geometry

In projective geometry, ordinary points and lines are supplemented by ‘ideal points’ or
‘points at infinity’, and ‘ideal lines’ or ‘lines at infinity’. These remove the need for certain
complicating qualifications in generic statements about incidence among the members of the
sets of lines and points. Such statements make up a substantial proportion of the content
of projective geometry in its ‘pure’ form, which is concerned with properties of geometrical
configurations that remain invariant under projective transformations. Good texts on projective
geometry are provided by Seidenberg (1962) and Coxeter (1987), where the terminology and
standard proofs are presented in detail.

The idea of a projective transformation generalizes that of a perspective transformation.
That is, we consider the projective space to be just one of the possible hyperspaces embedded
in an ordinary space of one extra dimension in which there is considered to be a point of
perspective, not contained in our original ‘source’ space. From this point of perspective and
the ‘pencil’ of straight rays or lines that pass through this point (are ‘concurrent’ through this
point), we can map each point of the original embedded source space via such a line to a unique
corresponding point on some other ‘image hyperplane’ that also does not contain the point of
perspective; this defines a perspective transformation between our original source space and
the image space, including the ideal points, that are associated with the orientations of the
special rays parallel to the source or image spaces. Unlike an optical projection, where there
is a directionality to each light ray, in a perspective transformation of projective geometry, the
locations of the two intersections of the ray or line with the source and image spaces need not
be on one particular side, or even on the same side, of the point of perspective.

The ‘projective transformations’ are those mappings that can be factored into a finite num-
ber of perspective transformations. They map points to points, and lines to lines, and some
source or image points and lines may be of the ideal variety. Projective transformations do not
preserve angles and do not preserve distances, although when a configuration comprises many
angles and line segments, certain functions among several angles and some ratios of several line
segments may be found to be preserved by projective transformations.
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Figure 3. A harmonic net of points, An, constructed by projective transformations on a line with one fixed
point, F . Two projection points, P1 and P2, are collinear with F and serve to project the points, An, onto
corresponding points, Bn, along another line through F in the manner shown by the initial construction (a),
and then extended iteratively, (b), to fill in further members of the sequence, An. The distances, AnF , form a

doubly-infinite harmonic sequence.

Fig. 3a illustrates a construction of a special form of one-dimensional projective transfor-
mation from points on the line, A0F , back into the same line. This is accomplished by taking
a perspective transformation from each An to the point, Bn, on another line intersecting the
original through a point, F , using a point of perspective, P1. Then a perspective transformation
of this Bn using a second point of perspective, P2, collinear with F and P1, completes the pro-
jective transformation back onto the original line, A0F , to the new point, An+1. Similarly, we
can take the projective image of A1 and call it A2, or we can reverse the sense of the iterations.
Therefore, when this process is repeated, we obtain what is called a ‘harmonic net’ or ‘parabolic
net’ of points, An, which is doubly infinite, and we find that the directed (signed) distances,
rn = |AnF |, form a harmonic sequence in the sense that 1/rn − 1/rn+1 =K, for some constant,
K. As shown in the Fig. 3b, the sequence of points An extends for both positive and negative
n with the net of points converging to the single ‘fixed point’, F (which remains unmoved by
our projective transformation), from both sides of it.

The Möbius net, as it is traditionally introduced (see, for example, Fauvel et al., 1993)
extends the idea of a harmonic net to two dimensions by the construction illustrated in Fig.
4. The harmonic nets are important historically in the role they played in the perspective
art of uniform tilings, but they are not the most general forms of projective nets, even in one
dimension. If the line on which the B points lie in Fig. 3a does not pass through the same point
that joins P2P1 and A0A1, which we now call F2, but instead intersects the line of points A
at a distinct point, F1, then we find that the one-dimensional net constructed by the previous
construction now has two fixed points, F1 and F2. The net is as illustrated in the construction
of Fig. 5a. If we place the origin at the center of the interval, F1F2, and denote the half-width
of the interval by r∞, then the points An within the interval bounded by the fixed points can
be shown to follow the pattern,

rn = r∞ tanh(ξ + nγ/2), (2.1)

for some pair of parameters, ξ and γ, when both members of a consecutive pair lie inside the
interval, or

rn r∞ ξ nγ/ ,= coth( + 2) (2.2)

when both members of a consecutive pair lie outside the interval (and with the same γ). How-
ever, when the intermediate line of projection (where the ‘B’ points reside) is straddled by the
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Figure 4. The construction of the Möbius net in its traditional form. Starting with a line containing distinct
points A0 and A2 and a fixed perspective point, P0, a second line through A0 also containing point C0 and a
second fixed point of perspective, P2, construct lines C0P0 and A2P2 intersecting at C2. Let B1 be the intersection
of the two ‘diagonals’, A0C2 and A2C0, and let this point project from P2 onto the point A1 on A0P0, and project
from P0 onto the point, B0, on A0P2. If we now form B2 as the intersection of A2P2 and B0P0, and C1 as the
intersection of A1P2 and C0P0, we find that diagonals, such as A1B2, A0B1, and B0C1 are concurrent at a third
fixed point, P1, which lies on the same line as P0 and P2. A0, A1, A2 and B0, B1, B2 and C0, C1, C2 form parts of
projectively-equivalent harmonic sequencies converging towards P0. To continue these sequences, first we define
C3 as the intersection of A1P1 and C0P0, and find corresponding B3 and A3 by the intersections of the line
C3P2 with the lines B0P0 and A0P0 respectively. Similarly, we can continue harmonic sequences of the forms
An, Bn, Cn and so on, converging towards P2. The complete Möbius net constructed this way fills the plane

(including the portion on the opposite side of the line of the fixed points, P0P1P2 in this presentation).

projection points, P1 and P2, as shown in Fig. 5b, then the sequence of An alternates between
the inside and outside of the interval, and then

rn =
r∞ tanh(ξ + nγ/2) : n is even
r∞ coth(ξ + nγ/2) : n is odd

. (2.3)

{

A further possibility occurs when, with this alternating pattern, A2 =A0, a situation where
it is said that the projective transformation is an ‘involution’. Note that, when it is an involution
for the mapping from some point, A0, to A1 (and vice versa), it is an involution for every point
A on the line except F1 and F2. Obviously, in this case, we have r1 = r2∞/r0. A0 and A1 are
then an example of a ‘conjugate pair’.

In a projectively equivalent transformation of our line configurations to those where one of
the fixed points becomes the ideal point at infinity, the distribution of distances rn from the
other fixed point, taken as the origin, behaves exponentially,

rn = C(±1)n exp(nγ), (2.4)

where C is a positive constant and the exponentiated +1 or the −1 occurs according to whether
consecutive points belong to the same, or the alternating, semi-infinite intervals. In the latter
case, involution occurs when γ = 0. In the general case, the two constants, C and γ, as well as
the disambiguation of the ± symbol, are determined once a consecutive pair of the sequence rn
is given.
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Figure 5. Construction of a one-dimensional hyperbolic net in an interval with two fixed points, F1 and F2.
(a) The case with successive points falling within the same interval, with successive locations relative to the
center of the interval given by a formula like Eq. (2.1). For points lying outside the interval (not shown), Eq.
(2.2) would describe the sequence of locations. (b) The case showing a pattern of alternation of ‘inside’ and
‘outside’ locations of the A points with respect to the interval, where the locations relative to the center of the
interval would be described by a formula like (2.3). (c) The case of an ‘involution’ in a one-dimensional projective

transformation with two fixed points.

Figure 6. Schematic construction of the one-dimensional analog of the Möbius net grid on the circle using a
gnomonic projection of a tangent plane inscribed with a hyperbolic net (and its involution, or mirror reflection
about the finite fixed point, F1). On the circle, the grid gains a new symmetry – it reflects into itself across
the diagonal mirror-planes that mark the ‘edges’ of the four ‘faces’ of the squared-circle (analogous to the cubed

sphere).

These harmonic and hyperbolic one-dimensional nets always display their simplest geomet-
rical form when one fixed point is the ideal point; in the case of the harmonic net, the points
then appear as an equally spaced sequence that is self-similar under translation; in the hyper-
bolical case, the net is self-similar under rescaling and, if all the conjugate points under the
involution operation are included, the two intervals’ grids are mirror images of each other across
the origin. If we gnomonically project the harmonic net’s uniform grid onto the unit circle, we
obtain a one-dimensional version of the ‘equidistant’ gnomonic grid, which is not of interest to
us. However, the projection onto the circle in the hyperbolic case where the net has the scaling
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Figure 7. (a) The generic configuration illustrating the theorem of Pappus. Distinct points A, B and C are
collinear; points a, b and c are also collinear. Opposite sides of the hexagon, AcBaCb, intersect at the three
points X, Y , Z. The theorem states that X, Y and Z are then also collinear. (b) A small adjustment to the
configuration of panel (a) that causes the lines AY , BX, and CZ to become concurrent in the center of the
diagram. (c) By an iterative application of the theorem of Pappus we can extend the embryonic net of panel
(b) to a more complete version that will eventually fill the triangle formed by the fixed points A, a and Z. The
distributions of points along any given line of this net conform to the ‘tanh’ rule of (2.1) for one-dimensional
hyperbolic projective transformations; the present construction is therefore just a natural extension into two
dimensions of the concept of a projective hyperbolic net. (d) Like panel (c), but for the case where the three
fixed points, A, a, and Z are coincident, in which case we recover the ordinary parabolic, or harmonic, form of

the Möbius net.

self-similarity about the tangent point, F1, leads to a grid on the circle with mirror symmetry
also across the ±45◦ diagonal axes, as illustated in Fig. 6. Thus we would obtain the same
grid on the circle had we rotated the line containing the original grid by 90◦, confirming that
we trivially meet the criterion of grid coincidence in the overlaps of a ‘gnomonic squared-circle’
grid. We will see shortly how this 1D model generalizes to two (and even higher) dimensions,
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but it is instructive to approach the problem in a projective-geometrical style first.
We take a fresh look at the construction of 2D nets by first presenting the generic case of

the theorem in classical geometry of Pappus of Alexandria (Seidenberg, 1962), illustrated in
Fig. 7a. Given three distinct collinear points, A, B, C, and another three distinct collinear
points, a, b, c, we can form a hexagon, AcBaCb. Then the intersections, points X, Y and Z,
of the lines of opposite sides of this hexagon are also collinear.

But it takes only a one-parameter generic variation of the set-up of this configuration to
cause the lines AY , BX and CZ to become concurrent, as in Fig. 7b. By Brianchon’s theorem
(e.g., Coxeter 1987) this occurs when the hexagon XY CBcb tangentially circumscribes an
ellipse. When we extend the lines Zc, ZX, ac, aC, AX and AC, the additional intersections
at our disposal allow us to apply Pappus’s theorem again (repeatedly) to extend this net and
hence to iteratively cover the interior of the triangle formed by the fixed points, A, a and Z.
This is shown for a few of the next steps in Fig. 7c. To confirm that we are simply generalizing
the more familiar parabolic or harmonic form of the Möbius net, we show the corresponding
construction, with corresponding labels, in Fig. 7d for the special limiting case when the fixed
points A, a, and Z are made collinear.

Figure 8. The hyperbolic Möbius net grid in its simplest and most symmetrical presentations: (a) when two of
the fixed points are ideal and at orthogonal azimuth directions, in which case, the pattern of grid lines is invariant
to a set of constant rescalings; (b) when all three fixed points lie on the vertices of an equilateral triangle. In the
latter case, the chosen scaling corresponds in the case where the projective plane is considered tangent to the
unit sphere in which is inscribed a regular octahedron whose edges now correspond, via gnomonic projection, to

the triangle boundaries in the projective plane.

A generic ‘triangle’ of three nonconcurrent invariant lines in a 2D projective plane actually
partitions the projective plane into four separate triangular regions. Amongst the hyperbolic
projective transformations that fix the three vertices, there are now involutions that transpose
the three sets of pairs of regions in such a way that any point in the interior of one of the
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Figure 9. The same Möbius net of Fig. 8 centrally projected from the tangent planes onto the unit sphere,
showing the octahedral symmetry. The bold great circles marking the projected octahedral edges, near which
the grid becomes singular, correspond to the medians of the projected dual polyhedron, the cube. (The edges of
the circumscribed cube are drawn here for reference.) Only the grid lines that pass through the middle portion
of the triangular faces of the projected octahedron should be used in the construction of a practical gnomonic

cubed-sphere grid, the rest of the grid needing to be filled in by a suitable interpolation.

triangles has a unique conjugate image in each of the other three regions, and hence, each
hyperbolic net defined in one of the triangles has a unique image in each of the other regions.
As should be clear from the 1D example of hyperbolic projective transformations, the simplest
and most symmetrical presentation is achieved when we make all but one of the three fixed
points ‘ideal’ and place this remaining one at the origin. If we further insist that the lines
concurrent with the two fixed points at infinity are drawn in two perpendicular families in the
representation’s Cartesian coordinates, (X, Y ), with grid lines in the first quadrant (following
Eq. (2.4)) at X̂i = exp(γi) and Ŷj = exp(γj) as well as the fan of lines concurrent through the
center of the form:

Yj
Xi

= exp(γ(j − i)), (2.5)

we obtain the symmetric presentation shown in Fig. 8a. If we rotate the sphere to make
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the tangent point in the gnomonic projection correspond to a corner of the cube, or the face-
center of the associated dual octahedron, we obtain another symmetrical configuration of Fig.
8b. (The four triangular regions into which the projective plane is partitioned by the three
invariant lines are boldly numbered 1 through 4 in this figure.)

When this configuration is inscribed on the tangent plane Z = 1 of the unit sphere centered
at (X, Y, Z) = (0, 0, 0), and the gnomonic projection used to project the lines onto both hemi-
spheres, we have defined the gnomonic Mobius¨ net grid of nominal resolution γ. The result,
shown in Fig. 9, has octahedral (or cubic) symmetry and exhibits the desired perfect three-way
intersections at the eight corners of the cube dual to the octahedron of eight spherical triangles
that are each filled by a copy of the projected single-triangle net.

All that remains is to decide how the regions of the grid away from the cube corners need
to be replaced in order to preserve the good qualities while disposing of the chaotic bunching
of the lines that lie close to the medians of the cube’s faces.

3. Practical construction of the Mobius-net¨ gnomonic cube grid

In order to make a practical global grid that preserves the desirable properties of the Möbius
net in the corner regions of the cube, we need to keep the distribution of the final grid angles
measured from the cube edges exactly in proportion to the corresponding angles given by the
pure Möbius net projected back onto the sphere, in the symmetric way shown in Fig. 9, only
within some small specified angle α; if this half-width of the ‘Möbius zone’ becomes too large,
then we will see excessive bunching of our grid lines as we approach the median of each tile
of the cube and the grid will cease to be useful. But with a small or modest width to the
Möbius zone we can ‘fill in’ the central portion of our succession of grid lines between the two
bounding zones by an appropriate smooth interpolation that preserves the continuity of the first
few of the derivatives of the ‘index variable’ (a variable everywhere proportional to the index
or coordinate label of the final grid) with respect to the true angle measured from the cube-tile
median. Let us define this true angle to be φ, so that the cube-edges occur at φ=±π/4, let
the inner limits of the two associated Möbius zones occur at φ=±φt ≡±(π/4− α). Also, let
us name the index variable, a, which we assume, once it is normalized, to range from −1 to +1
between the two cube-edges.

Based on the fact that the projected index variable, a, must conform locally to the distri-
bution implied by (2.4) in the two Möbius zones where |φ| ≥ φt, and attain ±1 at φ=±π/4,
we deduce that, for a positive constant K, the two mutually-inverse relations must hold:

φ(a) = ∓π
4

+
1
2

gd
a± 1
K

, ∓φ≥ φt (3.1a)

a(φ) = ∓1 +Kgd−1(2φ± π/2), ∓φ≥ φt, (3.1b)

( )

where the Gudermannian function, gd, and its functional inverse, gd−1, are defined (e.g.,
Abramowitz and Stegun 1972, p77):∫ x 1

gd(x) = dt= 2 arctan(tanh(x/2)) = 2 arctan(exp(x))− π/2 (3.2a)
0 cosh(t)∫ [ ( )]y

−1 1 y π
gd (y) = dt= 2arctanh(tan(y/2))≡ ln tan + . (3.2b)

0 cos(t) 2 4
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We do not initially know the calibrating constant, K, but our choice of method for filling in
the distribution of a(φ) when |φ| ≤ φt will end up fixing K.

The solution is to smoothly interpolate the index function a(φ) with a polynomial between
the inner edges, located at φ=±φt, of the two Möbius zones. We do the interpolation using
a polynomial ‘spline’ of degree 2n− 1 antisymmetric about the origin (i.e., odd powers of φ
only), and a corresponding choice of the constant K, such that the value, and the first n
derivatives, of the polynomial at these locations matches the corresponding values obtained
from the inverse-Gudermannian based solutions that apply within the Möbius zones.

Denote the value of a(φt) by 1 +KA0, and its successive derivatives, which we wish to fit
there, by KAk, k = 1, . . . , n. Note that the Ak are defined analytically:

Ak =


gd−1(−2α) : k = 0

2k dk

dzk gd−1(z)
∣∣∣
−2α

: k > 0
. (3.3)



The odd- and even-order derivatives of gd−1(z) are given, for k ≥ 0, by:

d2k+1gd−1(z)
dz2k+1

=
k∑
j=0

(−1)j+k
(2j)!Tk,j

cos2j+1(z)
, (3.4)

and
d2k+2gd−1(z)

dz2k+2
=

k∑
j=0

(−1)j+k
(2j + 1)! sin(z)Tk,j

cos2j+2(z)
, (3.5)

where the integers coefficients Tk,j are defined recursively:

Tk,0 = 1 (3.6a)
Tk,j = 0, j > k (3.6b)
Tk,j = Tk−1,j−1 + (2j + 1)2Tk−1,j , k, j > 0. (3.6c)

These Tk,j belong to a class of what Riordan (1968, p. 217) calls ‘central factorial numbers’. The
first fews rows of a tabulation of them are given in Table 1 (while a more complete tabulation
can be found, in a slightly different arrangement, in Table A008958 of the On-line Encyclopedia
of Integer Sequences, https://oeis.org/A008958).

Define the interpolating spline in terms of its n odd-degree Taylor expansion coefficients:

a(φ) =
n

k=1

bk
φ2k−1

(2k − 1)!
, |φ|< φt. (3.7)

∑
Define the system matrix Mi,j , 0≤ i, j ≤ n to have the coefficients:

Mi,j =



−Ai : j = 0

0 : 0< 2j ≤ i

φ2j−i−1
t /(2j − i− 1)! : 2j > i

. (3.8)
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TABLE 1. Table of the first few of
the central factorial numbers related to
the formulae for the derivatives of the

inverse-Gudermannian

k j = 0 1 2 3 4 5

0

1

2

3

4

5

1

1

1

1

1

1

1

10

91

820

7381

1

35

966

24970

1

84

5082

1

165 1

Form the (n+ 1)-vector of ‘unknowns’, b̂k, by augmenting the polynomial coefficients, bk, with
an extra zeroth element as follows: 

     

13

b̂k =


K : k = 0

bk : 0< k ≤ n
, (3.9)



so that K is included among the unknowns, and finally, define the right-hand-side vector, Uk,
for the system:

Uk =


1 : k = 0

0 : 0< k ≤ n
. (3.10)

Then solving

provides the calibrating constant K and the Taylor series coefficients, bk that we need to
smoothly graft a spline portion of the grid definition to the Möbius net portion. An example
of this system for the quintic polynomial spline gives us:

Mb̂ = U , (3.11)





−A0 φt φ3
t /6 φ5

t /120

−A1 1 φ2
t /2 φ4

t /24

−A2 0 φt φ3
t /6

−A3 0 1 φ2
t /2





K

b1

b2

b3


=



1

0

0

0


. (3.12)

The examples where we have chosen a relatively large α= 10◦ and n= 1, 2, 3, 4, are plotted
as graphs of the resulting a(φ) in Fig 10. For smaller values of α (which might be more suitable



Figure 10. Examples of the graphs of the index variable, a(φ), plotted against the angle measured from the
tile-median in the cases where the half-width of the Möbius zone is α= 10◦ and the interpolating splines (colored
curves) are of degrees 2n− 1 = 1, 3, 5, 7, corresponding to the continuity attained at the join, φ= 45◦ − α, of
degrees, n= 1, 2, 3, 4, respectively, as indicated by the arrows in the lower-left inset. The black curves are the
graphs of the Möbius net a(φ) as defined by (3.1b) with the calibrating constants, K, needed to intercept the

spline and match its first n derivatives at the join.

for the grids used in numerical models) it would become difficult to distinguish the resulting
splines visually. While it is clear from the plotted graphs with these combinations of n and α
that the interpolatory procedure gives rise to no unwanted oscillation, we might ask: is this the
general case? To affirm that this is the case we state the following.

Theorem
For each positive α < π/4 and for each odd degree interpolating spline, the function, a(φ),

remains monotonic throughout the interval φ ∈ [−π/4, π/4].
2

The proof, which depends upon the properties of ‘absolutely monotonic’ functions (Bern-
stein, 1928; Widder, 1941) is provided in the Appendix B.

Figure 11 illustrates the construction of the Möbius net cubed sphere grid with order of
continuity, n= 1, and a half-width of the Möbius zones of α= 11.75◦. The grid in each tile
is extended so as to cover (almost exactly) the surrounding Möbius zones. One can see that,
within the hexagonal regions where three Möbius zones intersect, the desirable property of
perfect three-way grid line intersections is achieved. In the Möbius zones just outside these
hexagonal regions, it is not difficult to see examples of the failure of the three families of grid

14



Figure 11. An example of a Möbius net cubed sphere grid with a degree of continuity, n= 1, and Möbius zones
of half-width α= 11.75◦. The grid on each of the six cubic faces (tiles) is extended to almost exactly cover the
surrounding Möbius zones, so that the perfect concurrence of the three families of grid lines within each of the

hexagonal regions where three Möbius zones intersect can be visually verified.

lines to intersect concurrently.
This completes the detailed description and definition of this class of Möbius net gnomonic

cubed sphere grids. Each form of the index function, a(φ), is completely defined by only
two parameters: the index, n, that specifies the degree of continuity at the transition angles,
φ=±φt, where the Möbius zones begin; and the angular half-width, α, of the Möbius zones.

4. Conclusions

We have exploited the ideas of classical projective geometry to show that there exists a
class of gnomonic cubed sphere grids that enjoy the property exhibited by the traditional
‘harmonic’ and the more general ‘hyperbolic’ Möbius nets, that is, having coincident three-way
intersections in regions of a prescribed size surrounding the cube-corners where this property is
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most valuable. Polynomial splines are used to define the grid in the remaining area, so that the
transition is as smooth as the polynomial degree allows, and it is shown that this guarantees
monotonicity regardless of the location of the transition (implied by the angle α), or of the
degree of the interpolating polynomial spline.

For a model, especially one employing a finite volume or element approach, the advantages of
this new kind of gnomonic grid may not be significant in the course of the global model integra-
tion as there are no reasons to apply broad numerical stencils across the cube edges and corners.
However, in other downstream applications, such as interpolating to nested subdomains, and
especially in the problems of data assimilation where the numerical stencils associated with the
manipulation of covariance operators may be very broad, then being able to have the points of
the three adjoining grids extended across cube-corners coincide could be advantageous in terms
of computational efficiency and in accommodating high-order spatial numerical operators in a
streamlined way.
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Appendix A

Geometry of a simple class of gnomonic grids
We focus on the specification of the grid lines of a tile centered on the point of zero latitude

and longitude. It is always convenient to use Earth-centered Cartesian 3-vectors, scaled to
give the Earth a unit-radius, when discussing questions of grid geometry on the sphere. To
this end, we associate the Cartesian X-axis basis 3-vector, EX = [1, 0, 0], with the equatorial
point of zero longitude, and the Y -axis basis vector, EY = [0, 1, 0], with the equatorial point at
longitude (measured east) 90◦, and the intersection of the surface with Z-axis, the Cartesian
3-vector, EZ = [0, 0, 1], at the North Pole. We need only define the latitude angles along the
tile’s median at longitude 0 (i.e., Y = 0) of each of the family of grid lines cutting this median
perpendicularly and that contains an arc of the equator as a member; by cubic symmetry, all
the other grid lines must follow a similar distribution. To our selected family of grid lines,
we attach a map coordinate, y, with y = 0 denoting the equatorial arc, and y =±1 denoting
the bounding cube-edges, whose midpoints are at latitudes ±45◦, or equivalently, at Cartesian√ √
[1/ 2, 0,±1/ 2].

We shall suppose that we wish the separation of the grid lines in this family to be uniform
along the meridian at longitude ±β and that the latitude attained by a given grid line of this
family at this longitude is η, while the latitude it attains along the central meridian, or median,
of the tile, is θ. The crucial geometry of this situation is shown in two orthographic projections
in Fig. 1, where, from the upper portion, we see by elementary trigonometry, that the elevation
of the point on this grid line at the calibrating longitude, β, above the equatorial plane, Z = 0,
is h= sin η. But the tilted plane intersects the equatorial plane along the Y -axis, so, viewing
the geometry along this line of sight, and referring to the corresponding lower portion of the
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Figure A.1. The upper portion depicts a projection in the XY plane (Z = 0) of a contour at elevation above
the equatorial plane h (dashed) of the tilted plane whose angle with the equatorial plane is η along the oblique
line at longitude β, while in the XZ plane (Y = 0), the angle between the tilted plane and the equator is θ (the
true angular separation of the planes). The lower portion depicts the same configuration projected in the XZ
plane. θ is the maximum latitude attained by the gnomonic grid line that corresponds to the intersection of this

tilted plane with the unit sphere (shown as the dot-dashed arcs).

figure where the XZ-plane projection is shown, we must also have that h= cos η cos β tan θ,
and hence that ( )

θ = arctan
η

cos β
. (A.1)

tan

If η̂ corresponds to the cube-edge, θ = π/4, where y = 1, then, since tan θ = 1, we have:ˆ ˆ

tan(η̂) = cos β. (A.2)

Since we have chosen longitude β to be the one along which the latitudes η of the grid lines are
equally spaced, we have

η = η̂y, (A.3)

and hence we can recover the true angle θ that the plane of the grid line at map coordinate y
makes with the equatorial plane:

θ = arctan
tan[arctan(B1/2)y]

B1/2
, (A.4)

{ }

where
B = cos2 β. (A.5)
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In the case β = 0, or B = 1, then
θ =

πy

4
. (A.6)

which is the just the equiangular case.
In the intermediate case, β = π/4, or B = 1/2, which is the choice presently employed in

the FV3 cubed sphere,
θ = arctan

{√
2 tan[arctan(1/

√
2)y]

}
. (A.7)

In the well-behaved extreme limit of maximum obliquity in the choice of calibrating longi-
tude, β→ π/2, or B→ 0, we find that,

θ = arctan {y} , (A.8)

which is simply another way of recovering the equidistant case of Sadourny (1972), showing that
the present choice of grid in the FV3 model is indeed intermediate between the equiangular
and equidistant forms of the gnomonic grid.

Finally, we remark that, although our convenient geometrical interpretation of the grid
construction becomes obscured when B > 1 (the angle β thereby becoming imaginary) or B < 0
(imaginary B1/2), this extended parameter range continues to provide valid and potentially
useful members of this general family of gnomonic cubed sphere grids. Comparing the grid
spacing at the cube-edge, y = 1, with that at the face-center, y = 0, we find:

dθ

dy

∣∣∣∣
y=1

=
(1 +B)

2
dθ

dy

∣∣∣∣
y=0

. (A.9)

But this means that a judicious choice of parameter, B, can be used to off-set the discrepancy
of resolution between center and edge of a stand-alone nested grid when the nest is taken as a
substantial portion of one face of the cube subjected to a transformation of either dilation or
compression of the type proposed by Schmidt (1977)†. For example, when the Schmidt factor,
s, is used to change the resolution of the grid at the center of the targeted face in accordance
with the transformation,

θ′ = 2 arctan
(

tan(θ/2)
s

)
, (A.10)

then an equality of the resolution along the median line at the transformed edge-midpoint and
at the face-center:

dθ′

dy

∣∣∣
y=1

=
dθ′

dy

∣∣∣
y=0

, (A.11)
∣ ∣

is achieved when this transformation is combined with the parameter B of the gnomonic grid
with the value: ( √ )

B =
1√
2

1 +
2− 1
s2

. (A.12)

† The idea for this application was stimulated by discussions the author had with Drs. Tom Black and Gerard
Ketefian.
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Appendix B

Proof of the monotonicity theorem of section 3
Definition
A function f(z) is said to be absolutely monotonic in the interval, a < z < b, if it has

non-negative value and derivatives of all orders there (Bernstein, 1928; Widder, 1941).
2

If a function is absolutely monotonic, then any positive integer power of the function defines
another absolutely monotonic function.

The inverse-Gudermannian function gd−1(z) is absolutely monotonic in the interval 0< z <
π/2 because, expanded at the origin, its Taylor series coefficients (the absolute magnitudes of
the Euler numbers) are all non-negative and the radius of convergence, π/2, spans the interval.√

Likewise, the function, ŷ(z) = 1− 1− z, is absolutely monotonic for z ∈ [0, 1).
The approach to proving the montonicity theorem will be to show that the derivative,

da/dφ of (3.1b), which is an even function about φ= 0, must remain strictly positive when
it is symmetrically interpolated by splines of even degree between the contact points at φ=
±φt, 0< φt < π/4, when the highest possible degree of continuity is imposed at these contact
points.

First, we rescale the angle variable, x= φ/φt so that the interval covered by the polynomial
portion of the index function becomes simply x ∈ [−1, 1]. Define a symmetrical triangular hat
function,

y(x) = 1− |x|, (B.1)

and a parabolic spline function,
z(x) = 1− x2, (B.2)

and note that both functions vanish at |x|= 1 but have finite derivatives there. Since z ≤ 1 we
can regard y as defining an implied function of z:

ŷ(z)≡ y(x) = 1− 1− z(x), (B.3)
√

and, as we already noted above, ŷ(z) is an example of an absolutely monotonic function in
[0, 1), so we can expand all positive powers of ŷ in Taylor series with non-negative coefficients.
Moreover, since ŷ(0) = 0, the first nonvanishing term in the expansion of ŷk is the one in zk,
and therefore the matrix of the nonnegative coefficients Gk,j in each of these expansions:

ŷk(z) =
∞∑
j=0

Gk,j
j!

zj , 0≤ z < 1, (B.4)

is upper triangular,
Gk,j = 0, j < k. (B.5)

Also, since, G0,0 = 1, and

G1,j =
(2j − 3)!!

2j
> 0, j > 0, (B.6)
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if follows generally that,
Gk,j > 0, j ≥ k. (B.7)

In the x coordinate, the derivative of the two displaced inverse-Gudermannian functions, i.e.,
secant functions centered on x=±π/(4φt) provides the analytic functional form (within a
multiplicative constant) of the density, D, of the gnomonic grid coordinates defined purely by
the Möbius net distributions on either side of x= 0:

D =
1

cos(−2|x|φt + π/2)
, 0< |x|< π

2φt
, (B.8)

or equivalently, as an explicit function of y:

D(y) =
1

cos(2(yφt + α))
, −1− 2α

φt
< y < 1, (B.9)

which we also know to be positive, and an absolutely monotonic function (being the derivative
of one) with respect to y in the subinterval, 0≤ y < 1. Let the successive derivatives of D with
respect to y at y = 0 be Dk, which are non-negative by virtue of the absolute monotonicity:

Dk =
dkD(y)
dyk

∣∣∣∣∣
y=0

≥ 0. (B.10)

We can express function D(y) as a Taylor-Maclaurin series about y = 0:

D(y) =
∞∑
k=0

Dky
k

k!

=
∞∑
k=0

∞∑
j=k

DkGk,jz
j

k!j!
, (B.11)

convergent for |y|< 1 (but obviously not at y = 1 corresponding to the median, x= 0 where D
becomes infinite). The crucial observation is that, owing to Gk,j being upper-triangular, the
truncated series:

D̂n(y) =
n∑
k=0

n∑
j=k

DkGk,jz
j

k!j!
, (B.12)

defines the desired polynomial spline since it already matches all derivatives of D(y) up to
order n at the pair of locations corresponding to y = 0, and is itself an even polynomial of the
requisite degree, 2n in x. Moreover, D0G0,0 =D(0)> 0, and we have shown that the other
terms in (B.12) are only non-negative multiples of each of the basis functions, zj , which are
themselves all positive in the interval x ∈ (−1, 1). The implied positivity of the spline at all
points in the interval proves the theorem.
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